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autoinhibition was released inside the nucleus,
which suggests that nuclear formin regulation is
dynamically and tightly controlled. Thus, the en-
tire process from actin polymerization to SRF-
dependent gene expression can occur in the nucleus.
Moreover, nuclear formin function represents an
integral part of the physiological serum response.
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Wnt Stabilization of b-Catenin
Reveals Principles for Morphogen
Receptor-Scaffold Assemblies
Sung-Eun Kim,1* He Huang,1*† Ming Zhao,2* Xinjun Zhang,1 Aili Zhang,2,4 Mikhail V. Semonov,1‡
Bryan T. MacDonald,1 Xiaowu Zhang,5 Jose Garcia Abreu,1,3 Leilei Peng,2 Xi He1§

Wnt signaling stabilizes b-catenin through the LRP6 receptor signaling complex, which antagonizes
the b-catenin destruction complex. The Axin scaffold and associated glycogen synthase kinase-3
(GSK3) have central roles in both assemblies, but the transduction mechanism from the receptor
to the destruction complex is contentious. We report that Wnt signaling is governed by phosphorylation
regulation of the Axin scaffolding function. Phosphorylation by GSK3 kept Axin activated (“open”)
for b-catenin interaction and poised for engagement of LRP6. Formation of the Wnt-induced LRP6-Axin
signaling complex promoted Axin dephosphorylation by protein phosphatase-1 and inactivated
(“closed”) Axin through an intramolecular interaction. Inactivation of Axin diminished its association
with b-catenin and LRP6, thereby inhibiting b-catenin phosphorylation and enabling activated LRP6
to selectively recruit active Axin for inactivation reiteratively. Our findings reveal mechanisms for
scaffold regulation and morphogen signaling.

Signaling by secreted Wnt morphogens
governs developmental, homeostatic, and
pathological processes by regulating b-

catenin stability and represents a critical target
for cancer and disease therapeutics (1, 2). Without
Wnt stimulation, cytosolic b-catenin concentra-
tions are kept low because a “destruction com-
plex” assembled by the Axin scaffold binds to
b-catenin, Adenomatosis polyposis coli (APC),
casein kinase-1a (CK1a), and glycogen synthase

kinase-3 (GSK3), and promotes phosphorylation
of b-catenin by CK1a and GSK3, thus ensuring
b-catenin ubiquitination and degradation (1–3).
Upon Wnt stimulation, a receptor complex on the
cell surface is formed between Frizzled (Fz) and
low-density lipoprotein receptor–related protein 6
(LRP6), resulting in phosphorylation and activa-
tion of LRP6 and its recruitment of Axin (4–7).
Assembly of the Fz-LRP6 complex and asso-
ciated Dishevelled (Dvl) and the Axin destruction
complex, referred to collectively as the LRP6
signaling complex (signalosome), inhibits phos-
phorylation of b-catenin, thereby causing its sta-
bilization (6–10). The mechanism by which LRP6
activation leads to b-catenin stabilization re-
mains enigmatic (1, 2, 11).

Axin is a phosphoprotein central to assem-
blies of both destruction (12–15) and signaling
complexes (4–10), and it becomes dephos-
phorylated upon Wnt stimulation (16, 17). We
generated an antibody, Ab-pS497/500 (fig. S1,
A to C), for Axin phosphorylated at serines
497 and 500, which are GSK3 phosphoryl-

ation sites in vitro (18). Axin phosphorylation at
S497/S500 was decreased within 15 to 30 min of
Wnt3a treatment of mouse L fibroblasts (Fig. 1A),
embryonic fibroblasts (fig. S1D), and human
embryonic kidney (HEK) 293T cells (Fig. 1,
C and D). Wnt-induced dephosphorylation of
Axin likely reflects the counterbalance between
GSK3 and a protein phosphatase (PP) such as
PP1, whose catalytic subunit, PP1c, was iden-
tified in an RNA interference screen in Dro-
sophila cells as a requirement for Wnt/b-catenin
signaling (19). Through a functional cDNA over-
expression screen in HEK293T cells, we identified
PP1cg, one of the three PP1c genes in the human
genome (20), as an activator of the Wnt/b-catenin
signaling reporter TOP-Flash (fig. S2A). PP1cg
overexpression decreased phosphorylation of Axin
but not of LRP6 (Fig. 1B); a pharmacological
PP1 inhibitor, Tautomycin (TM), prevented Wnt-
induced dephosphorylation of Axin without affect-
ing LRP6 phosphorylation (Fig. 1C and fig. S3).

PP1 has pleiotropic roles, and its specificity
is conferred by hundreds of PP1c-binding pro-
teins (20). Inhibitor-2 (I2, or PPP1R2) is a spe-
cific inhibitor of PP1c (20). Overexpression of
I2 countered Wnt3a-induced Axin dephosphoryl-
ation (without affecting LRP6 phosphorylation)
and b-catenin stabilization (Fig. 1D and fig. S2B),
inhibited Wnt3a- or PP1cg-activated TOP-Flash
(fig. S2, C and D), and antagonized b-catenin
stabilization by an activated LRP6 (fig. S2E).
Depletion of the endogenous I2 with short
hairpin RNAs (shRNAs) resulted in accumu-
lation of b-catenin and increased TOP-Flash
(Fig. 1E and fig. S2F). A morpholino antisense-
oligonucleotide (MO) that targets Xenopus I2
mRNA and blocked I2 protein synthesis caused
deficiency in Xenopus head development and
reduced anterior marker expression, which were
restored by human I2 mRNA injection or knock-
down of b-catenin (Fig. 1F and fig. S4). Thus, I2
antagonizes Wnt/b-catenin signaling and partic-
ipates in vertebrate anteriorization, which requires
Wnt pathway inhibition (21).

Recent models of Wnt signaling (22, 23)
have overlooked Axin phosphorylation, and one
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argued that Wnt/LRP6 signaling maintains an
intact Axin destruction complex without inhibit-
ing b-catenin phosphorylation (22). We reeval-
uated this critical issue. We found that in multiple
Wnt-responsive cells, the rate of b-catenin phos-
phorylation was suppressed under Wnt stimulation
(fig. S5) as reported (3, 24), and this correlated
with Axin dephosphorylation.

Association of Axin and b-catenin is the cor-
nerstone binary interaction within the destruc-
tion complex. Coimmunoprecipitation (co-IP) of
endogenous proteins showed that the amount of
b-catenin associated with Axin appeared to be
unchanged or decrease after 0.5 hours of Wnt
treatment but to increase after 2 hours (fig. S6,
A and B). However normalization to the amount
of cytosolic b-catenin made it clear that Wnt
stimulation weakened the interaction between
b-catenin and Axin (Fig. 2, A and B, left pan-
els). We estimated that the dissociation constant
(Kd) of Axin-b-catenin association was increased
by Wnt3a (fig. S6C), signifying a weaker inter-
action. Indeed, Axin from extracts of Wnt3a-
treated cells exhibited reduced capability to
associate with b-catenin in an in vitro binding
assay (Fig. 3A) (17). Such diminished Axin-b-
catenin association observed in vitro and in vivo
correlated with, and appeared to be attributable
to, Axin dephosphorylation by PP1, because it
could be partially restored by I2 overexpression
or TM treatment (Fig. 3, A to C). For b-catenin
coimmunoprecipitated with Axin from Wnt3a-
treated cells, the amount of phosphorylation rel-
ative to that of b-catenin was reduced (Fig. 2, A
and B, middle panels; and fig. S6, A and B),
implying a diminished rate of b-catenin phos-
phorylation in the Axin complex in Wnt-treated
cells. Association of Axin with GSK3 remained

constant regardless of Wnt treatment (fig. S6,
A and B) (22, 25). Thus, Wnt signaling inhibits
Axin-b-catenin association and b-catenin phos-
phorylation, consistent with earlier findings

(3, 17), kinetic modeling (24), and the prevailing
model (1, 11, 14, 15) (see fig. S6C).

Wnt-induced phosphorylation of LRP6 re-
cruits Axin to assemble the signaling complex

Fig. 1. Wnt-induced Axin dephosphorylation by PP1 and effects of I2 on Wnt
signaling and Xenopus anteriorization. (A) Wnt3a-induced Axin dephosphorylation,
LRP6 phosphorylation and b-catenin stabilization in L cells. Protein detections were
performed by immunoblotting throughout the paper unless specified otherwise. actin, a
loading control. (B) Effect of PP1cg overexpression on phosphorylation of Axin but not
LRP6 in HEK293T cells. (C and D) Effects of TM (C) or I2 overexpression (D) on Wnt3a-
induced Axin dephosphorylation and b-catenin stabilization in HEK293T cells. (E)
Effects of I2 depletion with shRNAs (sh-I2) on b-catenin stabilization (top) and TOP-
Flash (bottom) in HEK293T cells. shGFP, an shRNA against green fluorescent protein.
Error bars, mean T SD of triplicates. (F) Effect of I2 depletion with an I2MO in embryos
and its rescue by human I2 mRNA. CoMo/Uninj, control MO-injected/uninjected.

Fig. 2. Wnt regulation of Axin-b-catenin and Axin-LRP6 association, and of b-catenin phospho-
rylation in the Axin complex. (A and B) Quantifications of Wnt3a effects on ratios of Axin-associated
b-catenin versus input b-catenin (left), Axin-associated phospho-b-catenin versus Axin-associated b-catenin
(middle), and Axin-associated LRP6 versus total LRP6 (right) in L (A) and HEK293T (B) cells. Error bars,
mean T SEM of triplicates.
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(5–7). Intriguingly, co-IP of endogenous proteins
showed that Wnt-induced association of LRP6
and Axin was prominent at 0.5 hours but dimin-
ished after 2 hours (Fig. 2, A and B, right pan-
els; and fig. S6, A and B), despite persistence of
phospho-LRP6 (fig. S5). The diminished binding
between phospho-LRP6 and Axin appeared to
result from Axin dephosphorylation by PP1, be-
cause the binding was enhanced by I2 overex-
pression or TM treatment (Fig. 3, B and C) and
reduced by I2 depletion (Fig. 3D). Axin from
extracts of Wnt3a-treated cells showed reduced
capability to associate with phospho-LRP6 in an
in vitro binding assay (fig. S7A), and this reduc-
tion appeared to result from Axin dephosphoryl-
ation by PP1 because it was prevented by I2
overexpression (Fig. 3A). Complementarily,
Axin from extracts of cells treated with a phar-
macological GSK3 inhibitor, BIO or SB216763,
or of Gsk3a−/−;Gsk3b−/− cells (26), had minimal
association with phospho-LRP6 (Fig. 3E and fig.
S7B). Thus, phosphorylation of Axin by GSK3
enhanced, whereas dephosphorylation of Axin by
PP1 diminished, Axin’s ability to associate with
phospho-LRP6 (and b-catenin), implying that
activated LRP6 selectively recruits the phospho-
rylated form of Axin that is active in b-catenin
association and degradation.

The above results imply that Axin may un-
dergo a phosphorylation-dependent conforma-

tional change. Axin is an intrinsically disordered
protein with individual partner-binding domains
(fig. S8A) (14, 15). Axin’s b-catenin binding do-
main (Axin-BCD) associated, in vitro and when
overexpressed in cells, with Axin DIX domain
(Axin-DIX) but not homologous Dvl2 DIX do-
main (Dvl-DIX) (Fig. 4A and figs. S8B and S9),
reflecting a specific and direct interaction. Phos-
phorylation of Axin-BCD by GSK3 in vitro in-
hibited BCD-DIX binding (Fig. 4A and fig.
S8C). Therefore, there may be an intramolec-
ular BCD-DIX interaction that is prevented upon
Axin phosphorylation by GSK3, providing an
explanation for how phosphorylation of Axin
enhances its association with b-catenin and
phospho-LRP6. Indeed Axin intra- and inter-
molecular interactions appeared to be mutual-
ly exclusive because b-catenin and Axin-DIX
competed for binding to Axin-BCD (Fig. 4B
and fig. S10A). A positively charged histidine-
rich region of BCD (figs. S9, S10B, and S11)
and a negatively charged loop of DIX (figs. S12A
and S13) participated in BCD-DIX interac-
tion, which appeared to be disrupted by negative
charges generated in BCD through phosphoryl-
ation by GSK3 (figs. S10, C and D, and S11).
Axin(SD4), which contains phosphomimetic as-
partic acid substitutions of four serines (includ-
ing S497 and S500) in BCD (fig. S11), and
Axin(DA), which contains alanine substitutions

of acidic residues in DIX (fig. S13), were each
expected to have a weaker intramolecular inter-
action (figs. S10D and S12A) and were indeed
more effective in inhibiting Wnt/b-catenin sig-
naling than the wild-type (WT) Axin (Fig. 4C).
Axin(SA4), which contains alanine substitutions
of the four serines in BCD (fig. S11) and was
predicted to have a stronger intramolecular inter-
action (fig. S10C), was less effective in inhib-
iting Wnt/b-catenin signaling (Fig. 4C). These
results support a model that Axin “autoin-
hibits” through the BCD-DIX intramolecular
interaction. Live cell FRET (fluorescence res-
onance energy transfer) imaging corroborated
this model by demonstrating a Wnt3a-induced
proximity of Axin’s carboxyl DIX to its amino
terminus (figs. S14 to S17), likely through
Axin dephosphorylation.

We propose a Wnt signaling model (Fig. 4D)
that appears to unify findings on the two Axin
complexesmediating LRP6 signaling and b-catenin
destruction. Without Wnt, Axin is associated
with and phosphorylated by GSK3 and is in an
activated (“open”) conformation for b-catenin
binding and phosphorylation and poised for en-
gagement of LRP6 (Fig. 4D). With Wnt, LRP6
undergoes Fz /Dvl-dependent phosphorylation
and recruits the active Axin destruction complex
to form the signaling complex, in which GSK3
bound to Axin is inhibited by phospho-LRP6

Fig. 3. Effects of Wnt-regulated Axin phosphorylation on its binding to
b-catenin and LRP6. (A) HEK293T cells overexpressing I2 (or control) were
treated with Wnt3a. Lysates were incubated with GST-b-catenin or GST-phospho-
LRP6C in vitro. Bound or input Axin and phospho-Axin were examined. (B and C)
L cells treated with TM (B) and HEK293T cells overexpressing I2 (or control) (C)
were stimulated with Wnt3a for 0.5 hours. Lysates were immunoprecipitated with
an Axin antibody, and Axin-associated b-catenin and LRP6 and input proteins
were examined. Quantifications show Axin-associated b-catenin versus cytosolic
b-catenin (top), and Axin-associated LRP6 versus total LRP6 (bottom). TM or I2 re-
duced Wnt3a-induced b-catenin levels (Input). Error bars, mean T SEM of triplicates.
*P < 0.05 and **P < 0.01 with student-Newman-Keuls test. (D) HEK293T cells
expressing an I2 (or control) shRNA were treated with Wnt3a for 0.5 hours. Lysates
were immunoprecipitated with an Axin antibody, and Axin-associated LRP6 and
input lysates were examined. (E) In vitro binding to GST-phospho-LRP6C by Axin
from lysates of WT or Gsk3a−/−;Gsk3b−/− mouse embryonic stem cells. Bound or
input Axin was examined.
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(27–29), leading to inhibition of b-catenin
phosphorylation and tipping the balance toward
Axin dephosphorylation by PP1. Dephospho-
rylated Axin adopts an inactivated (“closed”)
conformation through intramolecular autoinhi-
bition and becomes incompetent for association
with b-catenin or phospho-LRP6, leading to dis-
assembly of destruction and signaling complexes
(Fig. 4D). Phospho-LRP6 is thus freed for an-
other round of recruitment of phosphorylated-
activated Axin for inactivation while ignoring
dephosphorylated-inactivated Axin, and the steps
likely reiterate to keep b-catenin phosphorylation
suppressed.Wnt-induced biphasic assembly and
disassembly of the LRP6 signaling complex ap-
pear to enable phospho-LRP6 to inactivate Axin
in a “catalytic” manner, underlying Wnt stabili-

zation of b-catenin in broad component stoi-
chiometries. GSK3 acts as an “assembler” of
destruction (16–18) and signaling complexes
(4, 6, 8–10) through phosphorylation of Axin and
LRP6, whereas PP1 dephosphorylates Axin (19)
to disassemble both complexes while leaving
phospho-LRP6 unperturbed for continuous sig-
naling. Our model further explains b-catenin sta-
bilization kinetics. Elevating levels of b-catenin,
by competing against Axin intramolecular auto-
inhibition, could promote reassembly of the
Axin-GSK3-b-catenin complex and counter its
disassembly by Wnt (Fig. 4D), thereby plateau-
ing when equilibrium is achieved. This implies a
safeguard mechanism by which rising concen-
trations of b-catenin could trigger its own deg-
radation to avoid excessive accumulation. Axin

represents a scaffold with an on/off switch con-
trolled through a ligand- and phosphorylation-
dependent intramolecular interaction, which
additionally could serve as a feedback sensor of
target (b-catenin) concentrations. Similar scaffold
functions could occur in other pathways as high-
lighted by yeast Ste5 (30).
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Fig. 4. A phosphorylation-regulated Axin intramolecular interaction and a Wnt signaling
model. (A) Association of Axin-DIX with GST-Axin-BCD and its inhibition by GSK3 phosphorylation of
Axin-BCD. (B) Competition of b-catenin association with GST-Axin-BCD by Axin-DIX (lanes 1 to 6) and
vice versa (lanes 7 to 12). Purified recombinant proteins were used in these in vitro assays. Axin-DIX
or b-catenin was detected by immunoblotting and GST or GST-Axin-BCD by Ponceau staining [(A) and
(B)]. The lower band of b-catenin (B) was a proteolytic fragment. (C) Comparisons of Axin(SD4), Axin(SA4),
and Axin(DA) with Axin in antagonizing Wnt-induced TOP-Flash in HEK293T cells. x axes represent DNA
doses transfected. Error bars, mean T SD of triplicates. Note larger TOP-Flash differences at lower
overexpression doses. Insets show levels of overexpressed Axin at the 1 ng dose and that of endogenous
Axin (con). (D) An “Axin inactivation” model for Wnt stabilization of b-catenin. APC and CK1a were
omitted for clarity. See text and fig. S18.
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