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A genetic screen identifies an LKB1–MARK signalling
axis controlling the Hippo–YAP pathway

Morvarid Mohseni1,2,3, Jianlong Sun1,2,3, Allison Lau1,3, Stephen Curtis1,3,4, Jeffrey Goldsmith5, Victor L. Fox6,
Chongjuan Wei7, Marsha Frazier7, Owen Samson8, Kwok-Kin Wong9,10, Carla Kim1,3,4

and Fernando D. Camargo1,2,3,11

The Hippo–YAP pathway is an emerging signalling cascade involved in the regulation of stem cell activity and organ size. To
identify components of this pathway, we performed an RNAi-based kinome screen in human cells. Our screen identified several
kinases not previously associated with Hippo signalling that control multiple cellular processes. One of the hits, LKB1, is a
common tumour suppressor whose mechanism of action is only partially understood. We demonstrate that LKB1 acts through its
substrates of the microtubule affinity-regulating kinase family to regulate the localization of the polarity determinant Scribble and
the activity of the core Hippo kinases. Our data also indicate that YAP is functionally important for the tumour suppressive effects
of LKB1. Our results identify a signalling axis that links YAP activation with LKB1 mutations, and have implications for the
treatment of LKB1-mutant human malignancies. In addition, our findings provide insight into upstream signals of the Hippo–YAP
signalling cascade.

Our understanding of human disease has benefited greatly from the
study of developmental pathways inmodel organisms. Characterization
of signalling cascades such as Wnt, Hedgehog and Notch has
particularly contributed to the understanding and treatment of cancer1.
A more recently discovered signalling cascade is the Hippo pathway,
originally described in Drosophila, and proposed to be a means by
which organ size can be regulated. This pathway is highly conserved
in mammals, where the mammalian hpo orthologues, MST1/2,
phosphorylate the large tumour suppressor (LATS1/2) kinases, which
in turn phosphorylate the transcriptional co-activator YAP, restricting
its activity and stability2–4. In the absence of phosphorylation, YAP
translocates to the nucleus where it binds to the TEA-domain
transcription factors5,6 (TEAD1–4).
Activation of YAP, or loss of upstream negative regulators leads to

striking overgrowth and tumour phenotypes in epithelial tissues, in
many cases driven by the expansion of tissue-resident stem cells3,4. In
addition, studies of human samples have demonstrated widespread
Hippo pathway inactivation and nuclear YAP localization in multiple
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epithelial malignancies7–9. However, genomic analyses of common
epithelial cancers have not revealed a significant rate of mutations in
the known components of the pathway10. Recent data also suggest
the presence of alternative kinases that might be responsible for YAP
regulation9,11. Thus, common alterations of Hippo signalling in human
cancer might be caused by mutations in genes not associated with
the pathway at present.
Here, we have performed a genetic screen to identify kinases that

impinge on the Hippo pathway. Our work uncovers kinases associated
with multiple aspects of cellular function that are robust regulators of
YAP localization and activity. These data provide important insight
about the nature of inputs that speak to Hippo kinases. In addition,
we identify the tumour suppressor LKB1 and its substrates of the
microtubule affinity-regulating kinase (MARK) family as crucial
regulators of the Hippo pathway. We present functional evidence
suggesting that YAP is a critical component of the LKB1 tumour
suppressive pathway. Our data have significant implications for the
treatment of Lkb1-mutant cancers.
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Figure 1 A kinome RNAi screen identifies regulators of Hippo–YAP
signalling. (a) Graphical representation of YAP-mediated STBS reporter
activation in cells. (b) Validation of STBS reporter sensitivity using siRNA
knockdown of known components of Hippo signalling. CTR, scrambled
siRNA. n = 5 independent experiments. (c) Schematic of RNAi screening
strategy. The RNAi screen was performed in 96-well plates using a stably
expressing HEK293T STBS–mCherry reporter cell line. Activation of the
STBS–mCherry reporter was visualized 4 days following siRNA transfection.
Fluorescence intensity was captured by flow cytometry. Statistical analysis
was performed to identify genes for secondary screening and final selection
of hits. (d) Mean Z -score and mCherry reporter fold change (versus
scrambled controls) values for each triplicate siRNA oligonucleotide were
plotted to identify hits with statistical thresholds of Z -score >2 and fold
change greater than 4. Highlighted rectangle represents hits satisfying

these thresholds. Green filled circles represent siRNA knockdown of LATS2
as a positive control. (e) A secondary siRNA screen identifies kinases
that reproducibly raise STBS–mCherry reporter activity, performed using
an alternative siRNA oligonucleotide source using two reporter systems.
The secondary screen was repeated three times using pooled siRNAs.
(f) YAP immunolocalization in HaCaT cells following siRNA knockdown
of kinases that regulate STBS reporter activity. Representative images
are shown; experiment repeated independently three times. Scale bars,
200 µm. (g) Immunoblot for Ser 127 YAP phosphorylation following siRNA
knockdown of kinases from secondary screen. CTR represents scrambled
siRNA and NF2 siRNA is used as a positive control. Representative blots
shown; experiment repeated three times. Also see uncropped figure scan
in Supplementary figures. Error bars represent ± s.d. from n=3 biological
replicates.

RESULTS
A genetic screen identifies multiple Hippo-regulating kinases
To identify potential kinases that can repress YAP/TEAD activity,
we developed an improved transcriptional reporter containing 14
copies of the known TEAD DNA-binding sequence (SuperTBS
reporter; Fig. 1a)11. Functional assays revealed that this reporter

faithfully recapitulated YAP/TEAD transcriptional activity, and was
highly responsive to perturbations of endogenous upstream Hippo
components such as LATS2 and the cytoskeleton-associated protein
NF2 (refs 12,13 and Fig. 1b). Armed with a robust reporter for
Hippo–YAP activity, we interrogated the effects of a human kinome
short interfering RNA (siRNA) library containing 2,130 unique
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Figure 2 LKB1 regulates YAP activity through the Hippo kinases. (a) LKB1
knockdown induces YAP-dependent expression of target genes Amotl2 and
Cyr61 (error bars represent mean± s.d. from n = 3 biological replicates).
(b) STBS–luciferase reporter (error bars represent mean± s.d. from n =6
biological replicates). (c) Immunofluorescence for F-actin (red), YAP
(green) and nuclei (blue) in LS174T (W4) cells. Dox-inducible LKB1
activation after 24 h results in LKB1-dependent cell polarization and
YAP nuclear to cytoplasmic translocation. Representative images shown;
experiment repeated six times. Scale bars, 20 µm. (d) Quantification of cell
polarization and YAP subcellular localization following Dox administration.
Data are derived from three independent experiments where at least 300
cells were scored. Error bars represent mean± s.d., n = 3. (e) MST1
activity in W4 cells is induced on LKB1 activation (+Dox). Note increased
MST1/2 phosphorylation in the full-length and cleaved forms of MST1
and increase in levels of cleaved active MST1 peptide. Representative
blots are shown; experiment repeated three times. Also see uncropped
figure scan in Supplementary figures. (f) Activity of LATS1/2 is increased
on LKB1 activation as measured by phosphorylation at Thr 1079
LATS1/2. Representative blots are shown; experiment repeated three times.
(g) ATS1/2 phosphorylation at Thr 1079 is abolished on siRNA knockdown
of LKB1 in MCF7 cells. (h) Ad-Cre-infected livers from Lkb1 wild-type
and Lkb1f/f mice exhibit an increase in liver size; error bars represent

mean± s.d. from n=6 mice per group. Scale bar, 1 cm. (i) Lkb1-deficient
murine livers exhibit an increase in cellular hepatocyte proliferation
compared with Lkb1 wild-type livers, n = 6 mice per group, 20 fields
of view (FOV) counted for each sample in a group. Error bars represent
mean± s.d. (j) Western blot analysis performed on liver lysates derived from
Ad-Cre-infected Lkb1 +/+ or Lkb1f/f mice 3 months post infection leads
to an overall decrease in cleaved activated Mst1 and Thr 183/Thr 180
Mst1/2 phosphorylation and quantitative PCR of Yap target genes. See
uncropped figure scan in Supplementary figures. Both lines of mice also
carried a p53 homozygous floxed allele. (k) Lkb1 loss in vivo also leads to
an increase in YAP target expression. Data represent mean± s.e.m., n=6
mice treated with Ad-Cre. Experiment was repeated in two additional mice
with similar results. (l) Overexpression of LATS1, LATS2 and MOB1 (MLL)
in LKB1-knockdown HEK293T cells can restore STBS reporter activity.
n=3 independent experiments. (m) Knockdown of MST1/2 and LATS1/2
in Dox-treated W4 cells suppresses LKB1-driven cytoplasmic translocation
of YAP (green) when compared with the scrambled negative control
(CTR siRNA). Scale bars, 20 µm. (n) Endogenous co-immunoprecipitation
experiments using HEK293T cells demonstrate physical association of
LKB1 with LATS1 and MST1. Immunoblots represent one of three
experiments performed. Also see uncropped figure scan in Supplementary
figures. ∗∗P ≤0.01, two-tailed t -test.
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Figure 3 MARKs act downstream of LKB1 to regulate Hippo–YAP.
(a) Small-scale RNAi screen on downstream substrates of LKB1 in
HEK293T STBS–Luc cells. Error bars represent± standard deviation
(s.d.) from n = 3 independent experiments. (b) Knockdown of MARKs
(MARK1, 3 and 4) in MCF7 and DLD1 cells activates STBS–Luc.
n = 3 individual experiments per group± s.d. (c,d) Nuclear YAP
accumulation (c) and decreases in LATS and YAP phosphorylation
following knockdown of MARKs (d). (e) Repression of MARK-dependent
STBS–Luc activity by overexpression of MOB1/LATS1/LATS2 (MLL). n=3

biological replicates± s.d. (f) Suppression of LKB1-driven cytoplasmic
translocation of YAP followingMARK4 knockdown in Dox-treated W4 cells.
Representative immunofluorescence images from three independent
experiments. Right panel, quantification of the number of polarized
cells in Dox-treated cells. P values calculated by comparing wild-type
Dox-treated cells with those treated with MARK siRNA. Data are derived
from four independent experiments where at least 300 cells were scored.
Error bars represent mean± s.d. from n = 4, ∗∗,P ≤ 10.01, two-tailed
t -test. Scale bars, 20 µm.

siRNA oligonucleotides for 710 kinase genes in a HEK293T cell line
stably carrying the reporter (Fig. 1c). Initial hits were identified by
a statistical Z -score cutoff of 2 in addition to a >4-fold change
of mean fluorescence intensity compared with scrambled siRNA
controls (Fig. 1d). Our high-stringency statistical analysis revealed
21 kinases whose silencing resulted in enhanced STBS reporter
activity (Fig. 1d and Supplementary Table 1). Through a secondary
screen using a different commercial source of siRNAs to control
for off-target effects, we confirmed that knockdown of 16 of these
kinases robustly induced STBS reporter activity (Fig. 1e). Loss of
13 of these kinases also led to YAP nuclear accumulation even in
high-density conditions where Hippo signalling is typically activated
(Fig. 1f and Supplementary Fig. 1a). To further characterize these hits,
we evaluated their effects on YAP phosphorylation at Ser 127, as this
is a highly conserved direct-substrate site for LATS1/2 and is one
of the best characterized biochemical markers for Hippo-mediated
YAP inactivation14. Silencing of 8 of the 16 kinases resulted in
decreases in YAPS127 phosphorylation (Fig. 1g and Supplementary
Fig. 1b), indicating that some of these molecules regulate YAP activity
independently of Hippo.

Interestingly, four of the validated kinase hits (MAP2K7, MAP3K9,
MAP4K4, MAP4K5) are part of an activating network of the c-Jun
amino-terminal kinase (JNK) branch of the mitogen-activated kinase
(MAP) pathway, a stress-activated cascade implicated in compensatory
growth and tumorigenesis15. Silencing of these kinases does not lead to
a reduction in YAP Ser 127 phosphorylation, indicating an alternative
mode of YAP regulation (Supplementary Fig. 1b). A targeted analysis
using RNA-interference (RNAi) and small-molecule manipulation
confirmed that only the JNK armof theMAP kinase pathway controlled
YAP/TEAD reporter activity (Supplementary Fig. 1c,d). Although the
role of JNK signalling in cancer is complex, our data support emerging
findings suggesting that JNK activators are tumour suppressors, and
implicate Hippo–YAP signalling as a downstream mechanism16,17.
The ephrin receptor EPHA7 (Fig. 1d–g), implicated in providing
cell-positioning cues during development and mutated in lung cancer
and lymphomas18,19, also regulates YAP activity. Intriguingly, other
ephrin-type A receptors (EPHA4, EPHA5 and EPHA8; Supplementary
Table 2) are also found to enhance STBS activity, indicating an
important crosstalk between ephrin signalling and Hippo. We also
identify MAGI1 (Fig. 1e–g and Supplementary Table 1), a growth
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Figure 4 Scribble acts downstream of LKB1 to regulate Hippo–YAP.
(a) Confocal immunofluorescent and Z -stack analysis for Scribble
(SCRIB, green), F-actin (red) and nuclei (blue) in LKB1 and MARK
knockdown in MCF7 cells. Note mislocalization of SCRIB following
LKB1 or MARK silencing. Representative images from 4 independent
experiments. (b) Immunofluorescence in W4 cells demonstrates that
LKB1 activation leads to SCRIB re-localization to the cell membrane
and actin cap and that this requires MARKs activity. (c) Knockdown
of SCRIB in HEK293T cells reduces Ser 127 YAP phosphorylation.

(d) Knockdown of SCRIB in Dox-induced LKB1-activated W4 cells
suppressed YAP re-localization to the cytoplasm and actin cap.
(e) Endogenous co-immunoprecipitation of MARK1 demonstrates
potential interactions with LKB1, SCRIB, MST1 and LATS1. (f) The
physical interaction between SCRIB and MST is reduced in the
absence of MARK1. Adjusted lysate amounts were used to obtain
equal levels of immunoprecipitated SCRIB. See uncropped figure scan
in Supplementary Figures. Representative blots from at least 3 repeated
experiments. Scale bars, 20 µm.

suppressive kinase also mutated in multiple human cancers10,20. GAK,
a protein involved in clathrin-mediated endocytosis is also a hit21, as
are the microtubule regulating kinases NEK4 and TESK1 (ref. 22).
Among the other regulators, a recently described Hippo-regulating
kinase, TAOK1, was also identified (Fig. 1 and Supplementary Fig. 1a,b
and Table 1 and ref. 23).

LKB1 regulates YAP through MST/LATS
We were particularly interested by the fact that YAP phosphorylation
was significantly repressed by STK11 knockdown (Fig. 1e–g). STK11,
also known as LKB1, is a well-established human tumour suppressor
that controls, among other things, cellular metabolism, proliferation
and polarity24. The effect of LKB1 knockdown on YAP phosphorylation
and localization was reproduced with multiple oligonucleotides and
cell lines (Supplementary Fig. 2a–d). LKB1 knockdown also resulted
in the upregulation of known YAP target genes, such as Amotl2 and
Cyr61 (ref. 6 and Fig. 2a). This transcriptional response was entirely
YAP-dependent, as endogenous target gene and reporter responses
were suppressed in YAP/LKB1 double-knockdown cells (Fig. 2a,b and
Supplementary Fig. 2e). To further demonstrate a regulatory role of
LKB1 upstream of YAP we used an engineered intestinal epithelial
cell line (W4) in which LKB1 activity could be induced following
treatment with doxycycline25 (Dox). Dox-dependent LKB1-activity
is evidenced by polarization and actin cytoskeleton rearrangements
(Fig. 2c,d). Whereas YAP is predominantly nuclear at low cell densities,
stimulation of LKB1 activity induced a striking and significant shift of

YAP localization into the cytoplasm and actin cap of polarized cells
(Fig. 2c,d). Consistent with this, we observed a significant reduction of
YAP/TEAD transcriptional activity inDox-treated cells (Supplementary
Fig. 2f). Our results are consistent with a recent report indicating YAP
activation in LKB1-mutant cell lines26.
We next determinedwhether LKB1 acts through the canonical Hippo

kinases to regulate YAP. We observed increased MST1 activity, as
measured by phosphorylation and the presence of a cleaved MST1
catalytic fragment following LKB1 activation in W4 cells (Fig. 2e). Sim-
ilarly, LKB1 activation led to a marked increase in phosphorylation of
Thr 1079 in LATS1/2 (Fig. 2f). This residue marks LATS1/2 activation
by MST1/2 and its co-activator SAV1 (ref. 14). Correspondingly, LKB1
silencing led to loss of LATS1/2 Thr 1079 phosphorylation (Fig. 2g).
To confirm that LKB1 is important for MST1/2 activation, we used a
mouse model in which Lkb1 was deleted in the liver using Ad-Cre. In
agreementwithMST1/2 loss-of-function phenotypes9, Lkb1 deletion re-
sulted in hepatomegaly and increased hepatocyte proliferation (Supple-
mentary Fig. 2g). As predicted, we also observed a significant decrease
in the amount of cleaved and phosphorylated MST1 peptide in Lkb1-
deficient livers (Fig. 2h and Supplementary Fig. 2h) and upregulation of
YAP target genes (Fig. 2i). Supporting our findings that LKB1 acts up-
stream of the Hippo kinases, we find that expression of LATS1/2 and its
co-activator MOB1 rescues the increase in YAP/TEAD transcriptional
activity following knockdown of LKB1 (Fig. 2j). Furthermore, knock-
down of MST1/2 or LATS1/2 in Dox-treated W4 cells significantly
suppresses the LKB1-mediated shift in YAP subcellular localization
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Figure 5 Yap activity is enhanced in Lkb1-deficient tumours.
(a) Immunohistochemistry for Yap on grade I–II lung adenocarcinomas
derived from Kras-G12D mutant (K) and Kras-G12D/Lkb1fl/fl (KL) mice
treated with intranasal Ad-Cre. Representative picture shown; n = 5
for each genotype. (b) Gene set enrichment analysis demonstrates
significant enrichment of a transcriptional Hippo signature in KL versus
K murine lung tumours. (c) Immunoblot analysis shows reduced active
phosphorylated and cleaved forms of Mst1/2 in individual KL lung tumour
nodules. Similarly, Ser 127 Yap phosphorylation is reduced (n =3 mice).

(d) Immunohistochemistry for Scribble localization in K and KL lung
adenocarcinomas, (n = 5 mice). (e) Immunohistochemistry for Yap in
pancreas from control pancreas (WT) or Lkb1-deficient tissue. (f) YAP
localization assessed by immunohistochemistry in human intestinal
tissue and PJS intestinal polyps. Representative data, n =3 patients. (g)
Immunohistochemistry for YAP localization and expression in normal ductal
tissue compared with ductal breast adenocarcinoma (BC), and in normal
human liver compared with metastatic liver adenocarcinoma derived from a
PJS patient (h). Scale bars, 500 µm.

(Fig. 2k and Supplementary Fig. 2i–j). Supporting a regulatory role, we
find that endogenous and overexpressed LKB1 can strongly interact
with both LATS1 and MST1 in co-immunoprecipitation experiments
(Fig. 2l and Supplementary Fig. 2k–l).

LKB1 acts upstream of MARKs to regulate YAP
To shed light on a possible mechanism for regulation, we performed
in vitro kinase assays and mass spectrometry analyses to determine
whether MST1 or LATS2 could be direct targets of LKB1. Our results
found no evidence for LKB1-mediated phosphorylation at potential
consensus sites in either MST1 or LATS2, thus suggesting that the
LKB1 effect on these kinases was indirect. We then performed a
siRNA mini-screen evaluating most known downstream targets of
LKB1 (ref. 27), including AMPK and mTOR, commonly implicated in
growth suppression by LKB1, for their ability to regulate the STBS
reporter. This screen revealed that three members of the MARK
family (MARK1, 3 and 4; hereafter referred to as MARKs) were
able to modulate TEAD-reporter activity (Fig. 3a). These kinases are

also hits in our primary kinome screen if lower hit thresholds are
selected (Supplementary Table 2). The effect of MARK knockdown was
reproduced across several cell types and with multiple oligonucleotides
(Fig. 3b and Supplementary Fig. 3a), and its effect on TEAD-reporter
activity was also suppressed with concomitant knockdown of YAP
(Supplementary Fig. 3b). Loss of MARK4 also results in enhanced
YAP nuclear localization (Fig. 3c), and a decrease in LATS and
YAP phosphorylation (Fig. 3d). Suggesting that MARKs also act
upstream of the Hippo kinases, overexpression of LATS and MOB1
can fully suppress the MARK4 knockdown effect on TEAD-reporter
activity (Fig. 3e and Supplementary Fig. 3c). To ascertain whether
MARKs were functionally downstream of LKB1, we knocked down
MARKs in LKB1-induced W4 cells. Dox addition to W4 cells leads
to MARK1 activation27 (Supplementary Fig. 3d), and silencing of
MARKs in this context resulted in a significant loss of cytoplasmic
YAP translocation (Fig. 3f and Supplementary Fig. 3e–f). Combined,
these data demonstrate that LKB1 is exerting its effects on the Hippo
pathway through its direct substrate, theMARKs.
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Figure 6 YAP activation can overcome LKB1-driven tumour suppression.
(a) Soft-agar colony-formation assay using W4 and W4 cells also expressing
a Dox-inducible YAP-S127A transgene (TetOYAP ). Shown are representative
images of plates±Dox 4 weeks after seeding. Experiment was repeated
three times. (b) Subcutaneous xenograft assay using W4 and W4-TetOYAP
cells. Tumour volumes for non-induced and induced tumours are shown.
Representative tumours from non-induced and induced W4 and W4-TetOYAP

xenografts are shown on the right. n = 7 mice per group (c) Proliferation
assay for parental or W4 cells expressing either of two independent shRNAs
against LATS2. Data are representative of three independent experiments
performed. (d) Four-week soft-agar colony-formation assays of cells shown in
c. (e) Proliferation assay for W4 cells that were also transfected with either
of two siRNAs targeting SCRIB. Data are representative of three independent
experiments performed. Scale bars, 200 µm.

MARKs regulate SCRIB localization and Hippo kinase activity
MARKs are also known as the PAR-1 family of proteins and have
been implicated in the regulation of cell polarity and microtubule
dynamics through different mechanisms28. In Drosophila, the PAR-1
orthologue has been shown to phosphorylate and regulate localization
of Discs large29 (DLG), a member of the basolateral polarity complex
also consisting of Lethal giant larvae (LGL) and Scribble30,31 (SCRIB).
Proper localization of SCRIB is required for Hippo pathway activity
in both Drosophila and mammalian cells32–34. Thus, we posited that
LKB1 could be regulating Hippo–YAP activity through regulation
of the basolateral polarity complex by the MARKs. Indeed, we
find that MARKs knockdown results in mislocalization of SCRIB
(Fig. 4a and Supplementary Fig. 4a), and reduction of SCRIB protein
(Supplementary Fig. 4b–c). Demonstrating a direct role for LKB1 and
MARKs in the localization of SCRIB, Dox-mediated activation of LKB1
in W4 cells results in SCRIB recruitment to the cellular membrane and
the actin cap (Fig. 4b). Knockdown of MARKs in this context reduces
the sub-cellular localization shift of SCRIB (Fig. 4b). As predicted,
SCRIB knockdown also leads to an increase in TEAD-reporter activity
and a decrease in YAP phosphorylation (Fig. 4c and Supplementary
Fig. 4e). Importantly, knockdown of SCRIB in LKB1-activated W4
cells significantly rescues the shift of YAP localization to the cytoplasm
and actin cap (Fig. 4d and Supplementary Fig. 4f–h), indicating that
SCRIB is critical for LKB1-mediated regulation of YAP. Moreover,
co-immunoprecipitation experiments demonstrate that endogenous
MARK1 or overexpressed MARK4 can be detected in a complex

with LKB1, MST1, LATS1 and SCRIB (Fig. 4e and Supplementary
Fig. 4i), indicating the existence of a Hippo regulatory protein complex.
It has been proposed that association of SCRIB with MST1/2 is
important for the activation of the Hippo cascade34. We find that this
association is highly dependent on MARKs (Fig. 4f and Supplementary
Fig. 4j), as their loss impairs the interaction of both MST1/2 and
LATS1/2 with SCRIB.

YAP activation is a hallmark of LKB1-mutant tumours
Lkb1 germline mutations are associated with Peutz–Jeghers syndrome
(PJS), an inherited disorder in which patients develop intestinal
polyps and are at higher risk for developing multiple malignancies35.
Lkb1 alterations are also present in many types of sporadic epithelial
cancer, particularly lung and pancreatic carcinomas35. Loss of Lkb1
in mice is associated with more aggressive and metastatic potential
of lung tumours36. To corroborate our in vitro observations, we
evaluated the status of Hippo signalling in lung tumours derived
from mice carrying an activating K-Ras mutation (K) or the K-
Ras transgene and concomitant Lkb1 deletion (KL). Strikingly,
we find that stage-matched KL adenocarcinomas were strongly
positive for nuclear YAP in contrast to K tumours, which exhibit
predominantly cytoplasmic and diffuse YAP localization (Fig. 5a). To
further assess the extent of YAP transcriptional activity in Lkb1-null
tumours, we carried out gene set enrichment analysis to examine the
enrichment of a YAP transcriptional signature derived in our laboratory
(Supplementary Fig. 5a). Gene set enrichment analysis demonstrates
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Figure 7 YAP is essential for the growth of Lkb1-mutant tumours and tissue.
(a) Four-week soft-agar assay using the Lkb1-deficient lung adenocarcinoma
line A549. These cells expressed a Dox-inducible shRNA against YAP (iYAP
shRNA). Scale bar 100 µm. (b) Representative images of metastatic lesions
following intravenous injection of parental or iYAP shRNA A549 cells. Dox
treatment of hosts was carried for 2 months at which time lung tissue
was collected. Scale bars, 200 µm. (c,d) Ad-Cre-mediated deletion of a
conditional allele of Yap1 following Ad-Cre intravenous administration leads

to significant suppression of hepatomegaly and hepatocyte hyperplasia.
Scale bar, 1 cm. Animals received Ad-Cre at 1 month of age and tissues
were collected 2.5 months later. (e) PCNA immunohistochemistry on
Ad-Cre-treated mouse livers from wild-type, Lkb1 and Lkb1/Yap1 mutant
mice. Scale bars, 500 µm. n=5 mice per genotype. (f) Quantification of the
average number of PCNA-positive cells per field of view from e. n =5 mice
per genotype, 20 fields of view. Error bars represent± s.d. from n=5 mice.
∗P ≤0.05, two-tailed t -test.

a highly significant enrichment of this YAP signature in KL tumours
(Fig. 5b). Furthermore, biochemical analyses of tumour nodules also
demonstrate decreased MST1/2 and YAP Ser 127 phosphorylation in
the KL genotype (Fig. 5c). Furthermore, as predicted from our model,
SCRIB localization is markedly altered and its expression reduced
in KL tumours (Fig. 5d). We also evaluated YAP status in a model
of pancreatic neoplasia derived from tissue-specific deletion of Lkb1.
Consistent with the lung tumour data, Lkb1-null pancreatic ductal
adenocarcinomas exhibit robust YAP nuclear localization compared
with control tissue (Fig. 5e).

Moreover, we find that gastrointestinal polyps of human PJS patients
exhibit an increase in nuclear YAP localization in both epithelial and
smooth muscle cells compared with normal colon or juvenile polyposis
polyps carrying SMAD4mutations (Fig. 5f and Supplementary Fig. 5b).
Examination of a malignant ductal breast adenocarcinoma and
metastatic liver disease that developed in a PJS patient further revealed
strong YAP nuclear accumulation in the tumour (Fig. 5g,h). Taken
together, these data show that genetic deletion of Lkb1 in both murine
and human tissue leads to enhanced nuclear YAP activity.

YAP is functionally important downstream of LKB1
We next investigated functionally whether YAP acted downstream of
LKB1 in tumour suppression. Using W4 cells, we found that inducible
LKB1 activation has a powerful growth suppressive function in vitro
(Fig. 6a and Supplementary Fig. 6a), and in xenografts (Fig. 6b and
Supplementary Fig. 6b). However, expression of a YAP-S217A mutant
protein is able to significantly overcome all of LKB1 tumour suppressive
effects (Fig. 6a,b and Supplementary Fig. 6a,b). Silencing of either
LATS2 or SCRIB also rescues growth suppression by LKB1 activation
(Fig. 6d–f and Supplementary Fig. 6c,d). To determine whether we
could reverse the effects of LKB1 loss by manipulating YAP-expression
levels, we developed a Dox-inducible YAP short hairpin RNA (shRNA)
A549 cell line (Supplementary Fig. 7a). A549 is a lung cancer cell
line mutant for LKB1 widely used in tumour growth and metastasis
assays36. In both a soft-agar colony-formation assay, and in vivo
metastatic assays, we find that YAP depletion following Dox-treatment
reduces the number and/or size of colonies and tumours (Fig. 7a,b
and Supplementary Fig. 7a–c). Lung adenocarcinoma cell lines that
are wild type for LKB1 and expressed lower levels of YAP were
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insensitive to YAP modulation (Supplementary Fig. 7d–f). Finally,
we used Ad-Cre infection in mice to demonstrate that conditional
deletion of Yap1 suppresses the liver overgrowth phenotype (Fig. 7c,d)
and hepatocyte hyperplasia observed following acute deletion of Lkb1
(Fig. 7e,f and Supplementary Fig. 7g). Together these data provide
multiple lines of evidence that Hippo–YAP is a functionally critical
pathway downstream of LKB1.

DISCUSSION
One important question in theHippo–YAP field relates to the upstream
signals that regulate the Hippo kinases. Our studies here have identified
many molecules and pathways that might impinge on Hippo activity
and growth control. As many of these kinases are also mutated in
human cancer, their identification as regulators of YAP might provide
a molecular explanation for the observations that YAP is highly active
in numerous epithelial tumours, where mutations in the canonical
Hippo components are not found.
The tumour suppressive function of LKB1 has primarily been linked

to its ability to regulate cellularmetabolism throughAMPK activation37.
LKB1 is linked to mTOR through the sequential activation of AMPK
and the tumour suppressor TSC2, whose activation leads to suppression
of mTOR activity38. It has been shown that polyps from PJS patients
show upregulated mTOR activity, as do pancreata, cardiomyocytes
and endometria of Lkb1-deficient mice. Treatment of endometrial
LKB1-mutant adenocarcinomas with rapamycin and mTOR inhibitor,
leads to regression of these tumours, supporting a functional role for
mTOR downstream of LKb1 (ref. 38). Our studies here suggest that
LKB1 can also exert its tumour suppressive effects through activation
of a PAR-1-mediated polarity axis that controls the Hippo signalling
pathway. Our data demonstrating that YAP loss could completely
rescue growth phenotypes mediated by LKB1 loss in vivo suggest that
this might a central mechanism. On this note, it has been shown that
YAP can lead to mTOR activity through transcriptional activation of
miR-29. Thus, YAP activation due to LKB1 alterations could also lead
to mTORC1 activation.
Our data provide insight into a signalling axis downstream of LKB1

and PAR-1 kinases that regulates the interaction of the Hippo kinases
with SCRIB and perhaps other components of the basolateral polarity
complex. MARKs can also lead to changes in polarity by antagonizing
the PAR-3/PAR-6 polarity complex39. This complex is localized apically
whereas PAR-3 lacking PAR-1 phosphorylation results in ectopic lateral
mislocalization. Under normal conditions, the lateral exclusion of
PAR-3/PAR-6 by PAR-1 also cooperates with Crumbs to restrict Par-3
localization, and loss of both pathways disrupts epithelial polarity39.
The literature supports that the Hippo pathway is indeed regulated
by these polarity complexes32,40. Whether Par-3, Par-6, Crumbs and
other substrates of Par-1/MARKs are also involved in controlling
SCRIB remains to be investigated. Similarly, a connection between
Hippo–YAP signalling and the actin cytoskeleton has recently been
demonstrated41. Considering that LKB1 and SCRIB have effects on the
actin cytoskeleton42,43, it is possible that actin fibre regulation could
be an additional mechanism by which LKB1 modulates YAP activity.
LKB1 is then a candidate upstream regulator of the multiple inputs
that impinge on YAP activity. Collectively, these data suggest that
manipulation of the Hippo signalling pathway should now be evaluated
for the treatment of LKB1 mutant cancers. �

METHODS
Methods and any associated references are available in the online
version of the paper.

Note: Supplementary Information is available in the online version of the paper
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METHODS
RNAi screen. An RNAi library against all known kinases in the human genome was
used (Ambion Silencer Select Human Kinase siRNA Library, catalogue # 4397918).
Reverse transfection using 0.1 µl of transfection reagent (RNAimax, Invitrogen) and
siRNA of a final concentration of 5 nM was performed on approximately 10,000
HEK293T TBS–mCherry cells per well of a 96-well plate. We estimate that close to
98% of HEK293T cells are transfected using this method. The screen was performed
in triplicate, with 3 oligonucleotides for each gene (Fig. 1d). To ensure limited
edge effects, outer rows and columns were not used and instead were occupied
by cell media. At 96 h post-transfection, HEK293T cells in negative control wells
are confluent. Plates are subsequently trypsinized in 20 µl of trypsin/EDTA and
inactivated in 30 µl of DMEM/10% FBS and analysed by flow cytometry using Texas
red and GFP (HTS, BD LSRII) to obtain the mean fluorescent intensity of each cell.
Data were collected and analysed using FACSDiva 6.0 (BD Biosciences). For follow-
up work, individual oligonucleotides targeting YAP (s20366), LATS1 (s17392),
LATS2 (s25503), MST1 (s13570), MST2 (s13567), SCRIB (s23970), MARK1
(#s8512), MARK4 (s33718) and NF2 (s194647), all from Ambion, were used.

Hit selection. Positive hits for each gene were identified as follows. Z -scores
and fold changes were calculated for each oligonucleotide when compared with
the negative control for each individual 96-well plate. Rigorous hit selection was
performed by eliminating data that did not reproduce in at least two out of the three
experiments for each oligonucleotide. Subsequently, these data were further filtered
to identify oligonucleotides that reproducibly have aZ -score>2 and fold change>4.
The final hit selection is based on the mean Z -score values and mean fold changes
of each oligonucleotide for each gene, and if two or more oligonucleotides for each
gene met these thresholds.

Immunofluorescence. Cells were seeded in a 24-well plate on sterilized glass
coverslips overnight and then fixed in 4% paraformaldehyde/PBS for 10min at
room temperature, followed by three washes in PBS. Cells are permeabilized in
0.01% Triton/PBS for 1min, followed by three washes in 0.01% Tween/PBS. Cells
were then incubated in blocking buffer (0.5% FBS/PBS/0.01%Tween) for 1 h at
room temperature and then incubated overnight at 4 ◦C in primary antibody (YAP
1:1,000, Cell Signaling #4912; Scribble 1:1,000, Santa Cruz #1049; GFP 1:500, Abcam
#ab290) in blocking buffer. Coverslips were washed three times in 0.01%/PBS
Tween and then incubated in secondary antibody and/or Alexa-fluor Phalloidin
(1:5,000, Molecular Probes #A12381) for 1 h at room temperature. Coverslips
were washed 3 times in 0.01%/PBS Tween and once in PBS before mounting on
slides (ProLong Gold Antifade Reagent with DAPI, Life Technologies #P36935).
Immunofluorescence imaging was performed using the Zeiss LSM 700 Laser
Scanning Confocal with the following objectives: ×10 Zeiss EC plan-NEOFLUAR
dry, 0.3NA; ×25 Zeiss plan-NEOFLUAR multi-immersion, 0.75NA; ×63 Zeiss
plan-APOCHROMAT oil, 1.4NA; ×100 Zeiss plan-APOCHROMAT oil, 1.3NA,
and the following solid state lasers: 488, 555, 633 nm located at the IDDRC facility,
Boston Children’s Hospital. Image analysis was performed using ImageJ (1.45S)
and Metamorph Advanced Imaging Software. Immunofluorescence experiments in
cell lines were performed three independent times. For experiments with W4 cells,
images shown are representative of the population of cells that underwent cellular
polarization. A fraction of polarized cells show weaker or stronger levels of cellular
polarization; however, the images that are shown representmost of the polarized cell
population.

Immunohistochemistry. p53fl/fl, p53/Lkb1fl/fl mouse livers and KrasG12D,
KrasG12D/Lkb1fl/fl mouse lungs were collected and fixed in neutral buffered formalin
(4%; pH 7.0; 16–24 h, 20 ◦C), and then switched to 70% ethanol after 18–24 h.
Tissues were embedded in paraffin and 5 µm sections were mounted on positively
charged slides. Tissues were deparaffinized and antigen retrieval was performed
in pH 6.0 citrate buffer for 30min at 95 ◦C. ABC tissue staining was performed
by using a modified protocol from Vector Laboratories VECTASTAIN Elite ABC
kit (#PK-6101, #PK-2200). Briefly, the endogenous peroxidase was blocked by
incubation in 0.3% hydrogen peroxide for 1min. Sections were blocked in rabbit
sera followed by primary antibody incubation overnight at 4 ◦C (YAP 1:100, Cell
Signaling #4912; Scribble 1:400, Santa Cruz #1049; Ki67 1:50, DAKO MIB-5).
Sections were washed and then incubated withHRP-conjugated secondary antibody
(30min; 20 ◦C), and developed with 3,3′-diaminobenzidine tetrahydrochloride
(DAB)/H2O2. Counterstaining was done with haematoxylin and samples were
washed, dehydrated, and mounted with Vectamount (Vector Labs #H-5000). Data
obtained for immunohistochemistry analyses were repeated using sections from the
same tissue and/or from amongst the same genotypic group. Representative images
shown are from tissues that exhibit the least signal/noise background staining and
represent most of the tissues that were analysed; however, there are some tissues that
were stained that exhibited either more intense or weaker staining, which are not
shown as they represented the minority of tissues examined.

Immunoblotting. Cell lines and tissues were collected, and processed for western
blotting by solubilizing extracts in lysis buffer (50mM Tris, 100mMNaCl, protease
inhibitor cocktail (Roche #04693159001) and phosSTOP (Roche, # 04906837001)).
For standard immunodetection of proteins, 20 g of protein was used. For detection
of phospho-proteins 30 g of total protein lysate was used. Protein lysates were
then resolved by PAGE under reducing conditions (4–12% SDS–PAGE Bis-Tris
gels; MOPS buffer system; Invitrogen; NuPAGE-MOPS system). The gels were
blotted onto PVDF or nitrocellulose papers and blocked in either milk for standard
antibodies or BSA for phospho-antibodies (phospho-antibodies blocked in PBS, 5%
w/v BSA, 0.1% Tween-20 at dilutions: pYAP 1:1,000, Cell Signaling #4911; pMST1/2
1:1,000, Cell Signaling #3681; pLATS1/2 1:1,000, Cell Signaling #9153; pMARK
1:500, Cell Signaling #4836; pACC 1:1,000, Cell Signaling #3661; standard antibodies
blocked in TBS-T, 5%w/vmilk at dilutions:MST1 1:500, Cell Signaling #3682; Lats1
1:500, Cell Signaling #3477; MARK4 1:1,000 Cell Signaling #4834; LKB1 1:1,000
Santa Cruz sc-32245; Scribble 1:5,000, Santa Cruz sc-11049; MARK1 1:1,000 Cell
Signaling #3319; AMPK 1:2,500, Cell Signaling #2603) for 1 h at room temperature,
followed by incubation in primary antibodies diluted in blocking buffer. Unless
otherwise stated, all primary antibody incubation steps were performed overnight
at 4 ◦C. After washing in TBS-T, antigens were detected using HRP-conjugated
secondary antibodies (1:20,000 in TBS-T: Thermo #32430, #32460, Santa Cruz
#sc-2020), and visualized using enhanced chemoluminescence (Thermo, #34096).
Immunoblots shown are representative of experiments that were repeated and
reproduced at least three independent times. For some challenging experiments
and antibodies, the representative blots are ones that show the least nonspecific
background and have a low signal-to-noise ratio.

Cell lines. LS174T, HEK293T, DLD1, MCF7 and HaCaT cells were cultured in
DMEM+ 10% FBS in 5% CO2, >95% humidity. A549 cells were cultured in
RPMI-1640 supplemented with 2mM l-glutamine and 10% FBS. The LS174T–W4
clone cell line was a gift from H. Clevers (Utrecht Institute, Netherlands).
Other cell lines were acquired from the American Type Culture Collection
(Manassas).

Soft-agar colony-formation assay. The base agar consisted of low-melting-point
0.6% agar dissolved in RPMI-1640 (Life Technologies, # 31800-022) or DMEM
(Life Technologies # 12100046), 10% FBS and 1% penicillin/streptomycin. Base
agar was allowed to set for at least 1 h before plating of the top agar. The top
agar consisted of approximately 250 cells resuspended in 0.3% low-melting-point
agar dissolved in RPMI or DMEM, 10% FBS, 1X penicillin/streptomycin in a
well of a 6-well plate. Samples were incubated for 4 weeks following seeding
and then stained with 0.1% crystal violet in 10% ethanol for 20min. Wells were
destained in distilled water 5 times or until the decanted water ran clear before
imaging.

In vitro proliferation assay. A colorimetric MTS assay (Promega, # G5430,
Madison) was used to determine the proliferation rate for different cell lines.
Experiments were done following the manufacturer’s instructions. Briefly, 1,000
cells per well were cultured in triplicate into 96-well plates and incubated for 0–7
days. At the time of culture and each day for a total of 7 days, a plate was analysed
by colorimetric reading (absorption of light at 450 nm).

Mouse models. Animal work was approved by the institutional committee at
Boston Children’s Hospital. Animals were housed in specific pathogen-free facilities
at the hospital. The mouse models p53flox/flox (JAX Labs, B6.129P2-Trp53tm1Brn/J),
LKB1flox/flox (ref. 36), LSL-KRASG12D (JAX Labs, 129S/Sv-Krastm4Tyj/J), Yap1flox/flox

(ref. 11), PDX-Cre have been previously described44. For all experiments involving
Ad-Cre-mediated deletion, femalemice of approximately 5–6weeks of agewere used.
Ad-Cre administration was performed between 2–4 weeks of age. Xenograft assays
were performed in 5-week-old male Nu/J mice (JAX Labs, B6.Cg-Foxn1nu/J), using
1× 106 cells 100 µl−1 volume of Matrigel (BD Biosciences). Metastasis assays were
performed in 5-week-old male NOD/SCIDmice (JAX Labs, NOD.CB17-Prkdcscid/J)
using 1×106 cells 100 µl−1 volume of PBS injected intravenously. For induction in
the liver, 100 µlof Ad-Cre was introduced intravenously at 1× 109 pfu per mouse
(Ad5CMVCre, University of Iowa, GTVC)45. No statistical method was used to
predetermine sample size for treatment groups. There was also no requirement for
animal randomization during the course of the animal studies.

Tissue samples. We studied formalin-fixed paraffin-embedded tissue-biopsy
sections of diagnosed PJS and juvenile polyposis patients with confirmed mutations
in LKB1, SMAD4 and PTEN respectively. Studies with patients’ samples at Boston
Children’s Hospital were covered under IRB-CRM09-12-0660.

Small-molecule inhibitors. Metformin (10mM) was from EMD Millipore, and
AICAR (2mM) and rapamycin (1mM)were fromTOCRIS Bioscience.MAPKinase
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Signaling Pathway Inhibitor Panel was purchased from EMD Millipore (#444189)
and incubated according to the manufacturer’s recommended concentrations
(FR180204: IC50 = 510 nM, JNK II: IC50 = 40 nM for JNK-1 and JNK-2 and 90 nM
for JNK-3, JNK IX: pIC50 = 6.5, MEK1/2: IC50 = 220 nM, MK2a: IC50 = 60 nM,
Inhibitor 5: IC50 = 40 nM, PD98059: IC50 = 10 µM, Inhibitor IV: IC50 = 10 nM,
SB203580: IC50=600 nM, TPL2 Inhibitor: IC50=50 nM, ZM336372: IC50=70 nM).

Luciferase assays. For stable cell lines expressing STBS–luciferase, cell lysates
were analysed using Dual-glo luciferase assay (Promega, #E2940). Alternatively,
cell lines not containing the reporter were transiently transfected with the
STBS-firefly-luciferase and firefly-Renilla constructs using Lipofectamine 2000
(Life Technologies) and assayed 48 h following plasmid transfection (Berthold
Technologies).

Microarray and gene set enrichment analysis. Reverse transfection of RNAi
oligonucleotides for NF2, LATS2, YAP, TAZ and Scrambled RNAi was performed
in HEK293T, HaCaT and DLD1 cells with RNAiMAX (Invitrogen) according to the
manufacturer’s instructions. Duplicate samples were prepared for each condition.
Four days after transfection, confluent cell culture was collected for RNA extraction
with the Trizol reagent (Invitrogen). RNA quality assessment, cDNA synthesis,
probe generation, array hybridization and scanning were carried out by Boston
Children’s Hospital Molecular Genetics Microarray Core Facility. Data sets were
analysed with the online microarray analysis software GenePattern (Broad Institute)
with default settings. Differentially expressed genes were defined as those with at
least a twofold change in NF2/LATS2 double-knockdown cells and a P value smaller
than 0.05. To generate a generic Hippo target gene signature, genes upregulated
in all three NF2/LATS2 double-knockdown cell lines were combined, and those
without a gene symbol were eliminated from the list. For gene set enrichment
analysis, we used a data set from published gene expression profiles of lung
adenocarcinomas developed in KrasG12D, KrasG12DLkb1f/-or KrasG12DLkb1f/f mouse

models36. The enrichment analysis was performed in the GSEA software available
from the Broad Institute with the default settings.

Microarray accession numbers. Microarray data generated for this study have
been deposited in the GEO database under accession number GSE49384. The
published microarray data set36 re-analysed in this study is available from the GEO
database under accession number GSE6135.

Statistical analyses. No statistical method was used to predetermine sample size.
For experiments using LS174T-W4 cells, we always included a −/+ Dox control
to detect the level of activity of LKB1 in inducing cell polarity. Experiments
were discarded in which Dox administration had less than 50% affect on cell
polarization. For biochemical experiments, we performed experiments at least
three independent times to be confident in the experimental reproducibility. In
some cases, experiments were repeated more than 3 times to ensure validity of
our hypotheses. Investigators were not blinded to allocation during experiments
and outcome assessment. All statistical analyses were performed by SAS program
(Version 9.1, SAS Institute). All P values were two-sided and statistical significance
was set at P = 0.05. For categorical data, the χ 2 test was performed. For the
experiments shown, the variance was similar between groups that were being
statistically compared.

44. Morton, JP et al. LKB1 haploinsufficiency cooperates with Kras to promote pancre-
atic cancer through suppression of p21-dependent growth arrest. Gastroenterology
139, 586–597 (2010).

45. Stec, D. E., Davisson, R. L., Ha skell, R. E., Davidson, B. L. & Sigmund, CD.
Efficient liver-specific deletion of a floxed human angiotensinogen transgene
by adenoviral delivery of CRE-Recombinase in vivo. J. Biol. Chem. 274,
21285–21290 (1999).
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CORRIGENDUM

In the version of this Article originally published, the name ‘Kwok-Kin Wong’ was spelled incorrectly in the author list. This has now been 
corrected in all online versions of the Article.
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Supplementary Figure 1 Identification of kinases that can modulate 
the Hippo Signaling Pathway in vitro. (a) Immunofluorescence for YAP 
localization in confluent HaCaT cells following siRNA transfection of 
selected kinase hits. Scale bars, 200mm. Experiment was repeated 3 
times independently (b) Western Blot for YAP S127 phosphorylation, and 
total YAP in 293T cells four days following siRNA transfection of selected 
kinase hits. Representative blot is shown. This experiment was repeated 3 

independent times (c) Mitogen activated kinase pathway siRNA mini-screen 
using the STBS-luciferase reporter in 293T cells compared to scrambled 
control (CTR). Data shown is from technical triplicates. The experiment 
was repeated in three independent experiments. 5 bD) Selective JNK 
small molecule screen using the STBS-luciferase reporter in 293T cells. 
Schematic demonstrates where the inhibitors function. Fold changes 
calculated are compared to untreated controls.
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Supplementary Figure 2 LKB1 acts upstream of the Hippo Signaling 
Pathway in vitro and in vivo. (a) Knockdown of LKB1 using multiple different 
siRNA oligos increases STBS-luciferase reporter activity in 293T cells. n= 5 
biological replicates ± SD. (b) Knockdown of LKB1 reproducibly increases 
STBS-luciferase reporter activity across various cell lines. n=3 biological 
replicates. Error bars represent mean ± SD. (c) Knockdown of LKB1 
reproducibly decreases YAP S127 phosphorylation across various cell lines 
by western blot analysis. (d) Knockdown of LKB1 in DLD1 cells promotes 
YAP nuclear localization at confluent cell densities. Experiment has been 
performed independently three times. Scale bar, 200mm (e) qPCR validation 
of LKB1 and YAP siRNA knockdown in 293T cells. n=3 biological replicates, 
± SD. (f) LKB1 activation in W4 cells repressed TEAD-reporter activation. 

n= 3 replicates per biological triplicate (g) Decreased activity of MST1/2 
in LKB1 deficient livers. Ratio of cleaved MST1 versus full length MST is 
shown for an average from n=4 mice. (h) Quantification of YAP localization 
in W4 cells following MST1/2 or LATS1/2 knockdown. Data are derived from 
three independent experiments where at least 300 cells where scored. N 
= 3, error bars represent mean ± SD. (i) Validation of MST1/2 and LATS2 
downstream of LKB1 using two additional sets of siRNAS. Representative 
figure from three independent experiments is shown. Scale bars, 20mm 
(j, k) Immunoprecipitation of overexpressed LKB1, LATS1, and MST1 in 
293T cells. Representative blot is shown. Experiment has been performed 
three times independently. Error bars represent mean ± SD from triplicate 
samples. **, P≤ 0.01, two-tailed t-test.
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Supplementary Figure 3 Yap1 activity and localization is dependent on 
the LKB1 substrate, MARKs. (a) qPCR validation of siRNA knockdown 
of MARK1 and MARK4 and expression of YAP-target genes, CTGF and 
CYR61. n=3 biological replicates (b) STBS reporter activity following 
knockdown of MARK4 and YAP in 293T cells. n=3 biological replicates (c) 
Western blot showing expression level of Mob1/LATS1/LATS2 in MARK4 
knockdown cells. Representative blot is shown from three independent 
experiments (d) Activation of LKB1 in W4 cells promotes activation of 
MARKs as measured by Thr215 phosphorylation (MARK1) in the kinase 
activation loop. Representative blot is shown from three independent 

experiments (e) Immunofluorescence for YAP localization (green) and cell 
polarization (red) in doxycycline-untreated W4 cells following knockdown 
of MARK4. N= 3 biological replicates. Each experiment was performed 
with technical triplicates. Scale bar, 20mm. (f) YAP localization in W4 cells 
following LKB1 activation and knockdown of MARK4 using 2 independent 
siRNA’s. Three independent experiments were performed. Scale bars, 
20mm. (g) Biochemical analysis of phospho-YAP localization by subcellular 
fractionation of W4 cells treated with doxycycline and MARK knockdown. 
Representative blot from three independent experiments is shown. Error bars 
represent mean  ± SD. 
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Supplementary Figure 4 Scribble expression and correct localization is 
required for Yap1 activity. (a) Immunofluorescence for Scribble (SCRIB) 
localization (green) in DLD1 cells following LKB1 and MARK siRNA 
knockdown. Experiment was repeated three times. Scale bar, 200mm. (b-c) 
Immunoblot and qPCR for SCRIB expression following LKB1 and MARK1 
knockdown in MCF7 cells. n=3 biological triplicates (d) siRNA knockdown 
of SCRIB in 293T cells induces TEAD-reporter activity. n = 3 independent 
experiments.  (e) qPCR validation of SCRIB knockdown using 3 independent 
siRNA’s. n= 3 independent experiments. (f) Immunofluorescence for YAP 
localization (green) and cell polarization (red) in doxycycline-untreated W4 

cells following knockdown of SCRIB. Biological replicates were performed 
three times. Scale bar, 20mm. (g) Quantification of YAP localization in W4 
cells following scribble knockdown. Data are derived from three independent 
experiments where at least 300 cells where scored. (h) Immunofluorescence 
for YAP localization following activation of LKB1 and knockdown of scribble 
using 2 independent siRNA’s. Scale bar 20mm. (i) Immunoprecipitation 
of overexpressed MARK4 with SCRIB, LKB1, MST1, and LATS1. 
Experiment was repeated three  times. (j) Immunoprecipitated SCRIB in 
MARK1-knockdown cells show decreased interaction with MST and LATS. 
Experiment was repeated three times. Error bars represent mean ± SD.
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FIGURE S5
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Supplementary Figure 5 Generation of a Hippo Gene Expression Signature 
and localization of Yap in human LKB1-mutant tissues. (a) Microarray 
analysis on three different cancer cell lines reveal a core set of genes 
whose expression changes following siRNA knockdown of NF2 + LATS1/2, 
and for which this response is dependent on YAP/TAZ. Differentially 

expressed genes were defined as those with at least 2 fold change in NF2/
LATS2 double knockdown cells and a p value smaller than 0.05. (b) YAP 
immunohistochemistry on human SMAD4 juvenille polyposis (JP) intestinal 
polyp compared to a human LKB1 mutant Peutz-Jeghers (PJ) intestinal 
polyp. Scale bar, 500 mm.
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FIGURE S6
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Supplementary Figure 6 Yap1 acts downstream of LKB1 and can overcome 
LKB1 tumor suppressive function. (a) Quantification of triplicate samples 
of number and size of W4, W4TetOYAP, +/- doxycycline colonies in soft agar 
assays. n= 3 biological triplicates (b) Tumor weights of W4, W4TetOYAP, +/- 
doxycycline after seven weeks. Representative images of nude mice carrying 

xenografts with W4, W4TetOYAP tumors. N = 7 mice per each of the four 
genotypes. (c) qPCR validation of shRNA knockdown of LATS2 and activation 
of YAP-target genes in W4 cells. N = 3 biological replicates. (d) qPCR of 
Scribble following Scribble siRNA knockdown in the presence of LKB1 
activation. n= 3 biological replicates. Error bars represent  mean ± SD. 
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FIGURE S7
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Supplementary Figure 7 Loss of Yap1 in LKB1 mutant xenograft show 
tumor growth inhibition. (a) Quantification of triplicate samples of number 
and size of W4, W4TetOYAP, +/- doxycycline colonies. n=3 biological 
replicates (b-c)  Average tumor size and number per mouse following 
intravenous injection of 1x106 A549iYAPshRNA cells (-/+ doxycycline) 
for 6 weeks. n=3 mice per group (d-f) Two cell lines that are low in YAP 

target gene expression were infected with shYAP1 hairpins and assessed 
for proliferation using MTS assays (e) and soft agar colony formation assay 
(f) n = 3 biological replicates. Scale bar, 500 mm. (g) Expression levels of 
LKB1 and YAP following Ad-cre administration in Lkb1-floxed and Lkb1/
YAP floxed livers. n= 4 mice per genotype. Error bars represent mean ± 
SD.
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Supplementary Figure 8 Full scans
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